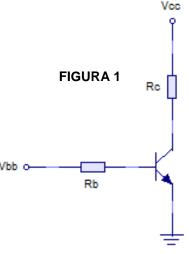

Revisado: marzo 2023

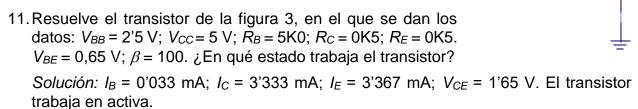
Ejercicios de Electrónica Analógica Boletín EAN10: Transistores nivel "pringaíllo"

- 1. Resuelve el transistor de la **figura 1** con los siguientes datos: $V_{BB} = 1$ V; $V_{CC} = 5$ V; $R_B = 15$ K; $R_C = 1$ K; $V_{BE} = 0,65$ V; $\beta = 100$
 - Solución: I_B = 0'023 mA; I_c = 2'333 mA; I_E = 2'357 mA; V_{CE} = 2'67 V.
- 2. Resuelve el transistor de la figura 1, en el que se dan los datos: V_{BB} = 1 V; V_{CC} = 6 V; R_B = 12K; R_C = 1K5; V_{BE} = 0,65 V; β = 100. ¿En qué estado trabaja el transistor? Solución: I_B = 0'029 mA; I_C = 2'9 mA; I_E = 2'929 mA; V_{CE} = 1'63 V. El transistor trabaja en activa.

Solución: $I_B = 0'034 \text{ mA}$; $I_c = 3'375 \text{ mA}$; $I_E = 3'409 \text{ mA}$; $V_{CE} = 1'95 \text{ V}$.


Solución: a) el transistor se encuentra en saturación. Por tanto, $V_{CE} = 0 \text{ V}$; b) $I_B = 0.675 \text{ mA}$; $I_C = 1.6 \text{ mA}$; $I_C = 2.275 \text{ mA}$.

- 5. Resuelve el transistor de la **figura 2**, en el que se dan los datos: $V_{BB} = 2 \text{ V}$; $V_{CC} = 6 \text{ V}$; $R_C = 2\text{K0}$; $R_E = 3\text{K0}$; $V_{BE} = 0.65 \text{ V}$; $\beta = 100$.
 - Solución: $I_B = 0'004 \text{ mA}$; $I_C = 0'446 \text{ mA}$; $I_E = 0'45 \text{ mA}$; $V_{CE} = 3'76 \text{ V}$.
- 6. Resuelve el transistor de la figura 2, en el que se dan los datos: $V_{BB}=1$ V; $V_{CC}=7$ V; $R_C=1$ K3; $R_E=1$ K0; $V_{BE}=0.65$ V; $\beta=100$. ¿En qué zona trabaja el transistor?


Solución: I_B = 0'003 mA; I_c = 0'347 mA; I_E = 0'350 mA; V_{CE} = 6'2 V. El transistor trabaja en activa.

- 7. Resuelve el transistor de la figura 2, en el que se dan los datos: $V_{BB}=3$ V; $V_{CC}=12$ V; $R_C=2$ K0; $R_E=2$ K0; $V_{BE}=0.65$ V; $\beta=100$. Solución: $I_B=0.012$ mA; $I_C=1.163$ mA; $I_E=1.175$ mA; $V_{CE}=7.32$ V.
- 8. Resuelve un transistor como el de la figura 2, en el que se dan los datos: V_{BB} = 5 V; V_{CC} = 7 V; R_C = 5K0; R_E = 1K0; V_{BE} = 0,65 V; β = 100. ¿En qué estado trabaja el transistor?

Solución: el transistor trabaja en saturación. I_B = 3'82 mA; I_c = 0'53 mA; I_E = 4'35 mA; V_{CE} = 0 V.

- 9. Resuelve el transistor de la **figura 3**, en el que se dan los datos: $V_{BB} = 1$ V; $V_{CC} = 5$ V; $R_B = 1$ K2; $R_C = 1$ K0; $R_E = 0$ K1. $V_{BE} = 0,65$ V; $\beta = 100$. ¿En qué estado trabaja el transistor? Solución: $I_B = 0.031$ mA; $I_C =$
- 10. Resuelve el transistor de la figura 3, en el que se dan los datos: V_{BB} = 1'5 V; V_{CC} = 6 V; R_B = 5K; R_C = 1K0; R_E = 0K3. V_{BE} = 0,65 V; β = 100. ¿En qué estado trabaja el transistor? Solución: I_B = 0'024 mA; I_C = 2'408 mA; I_E = 2'432 mA; V_{CE} = 2'86 V. El transistor trabaja en activa.

- 12. En el transistor de la figura 1, se introduce $R_B = 10\text{K0}$ y $R_C = 0\text{K3}$. Si se polariza con $V_{BB} = 3$ V y $V_{CC} = 6$ V, se pide: a) ¿en qué estado se encuentra el transistor?; b) calcula las corrientes de base, de emisor y de colector. Datos: $V_{BE} = 0.65$ V. Solución: a) en saturación; b) $I_B = 0.235$ mA; $I_C = 20$ mA; $I_E = 20.235$ mA.
- 13. En el transistor de la figura 1, se introduce R_B = 3K0 y R_C = 0K5. Si se polariza con V_{BB} = 1 V y V_{CC} = 5 V, se pide: a) ¿en qué estado se encuentra el transistor?; b) calcula las corrientes de base, de emisor y de colector. Datos: V_{BE} = 0'65 V; considera V_{CE} = 0'2 V en saturación.

Solución: a) en saturación; b) $I_B = 0'117 \text{ mA}$; $I_C = 9'6 \text{ mA}$; $I_E = 9'717 \text{ mA}$.

14. En el transistor de la figura 2, se polariza con $V_{BB} = 3$ V y $V_{CC} = 3$ V, y se monta $R_C = 2K5$ y $R_E = 1K5$. Se pide: a) ¿en qué estado se encuentra el transistor?; b) calcula las corrientes de base, de emisor y de colector. Datos: $V_{BE} = 0.65$ V; considera $V_{CE} = 0.2$ V en saturación.

Solución: a) en saturación; b) $I_B = 1'387 \text{ mA}$; $I_C = 0'180 \text{ mA}$; $I_E = 1'567 \text{ mA}$.

15. En el transistor de la figura 3, se polariza con $V_{BB} = 3 \text{ V y } V_{CC} = 2 \text{ V}$, y se montan $R_B = R_C = R_E = 1\text{K0}$. Se pide: a) ¿en qué estado se encuentra el transistor?; b) calcula las corrientes de base, de emisor y de colector. Datos: $V_{BE} = 0'65 \text{ V}$; considera $V_{CE} = 0'2 \text{ V}$ en saturación.

Solución: a) en saturación; b) $I_B = 0.967 \text{ mA}$; $I_C = 0.417 \text{ mA}$; $I_E = 1.383 \text{ mA}$.

Voc

FIGURA 3

Rb